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Abstract
A lot of efforts have been devoted to investigating how agents
can learn effectively and achieve coordination in multiagent
systems. However, it is still challenging in large-scale mul-
tiagent settings due to the complex dynamics between the
environment and agents and the explosion of state-action s-
pace. In this paper, we design a novel Dynamic Multiagent
Curriculum Learning (DyMA-CL) to solve large-scale prob-
lems by starting from learning on a multiagent scenario with a
small size and progressively increasing the number of agents.
We propose three transfer mechanisms across curricula to ac-
celerate the learning process. Moreover, due to the fact that the
state dimension varies across curricula, and existing network
structures cannot be applied in such a transfer setting since
their network input sizes are fixed. Therefore, we design a nov-
el network structure called Dynamic Agent-number Network
(DyAN) to handle the dynamic size of the network input. Ex-
perimental results show that DyMA-CL using DyAN greatly
improves the performance of large-scale multiagent learning
compared with state-of-the-art deep reinforcement learning
approaches. We also investigate the influence of three transfer
mechanisms across curricula through extensive simulations.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) has
achieved great success in achieving human-level control in
complex tasks (Mnih et al. 2015). However, there also exist
a lot of challenges in multiagent systems (MASs) where a
group of autonomous agents in a shared environment from
which they learn what to do according to the reward signals
received while interacting with each other. (Claus and Boutili-
er 1998; Busoniu, Babuska, and Schutter 2008). Further-
more, in large-scale multiagent systems, the dynamics and s-
tochasticity of the environment become more complex, which
makes it more challenging to achieve coordination among
agents (Singh, Jain, and Sukhbaatar 2019; Yang et al. 2018a;
Jiang and Lu 2018).

One efficient way to address large-scale multiagent learn-
ing problems is to leverage the concept of Curriculum Learn-
ing (CL), which has been an active field of research in the
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Figure 1: An example of DyMA-CL in StarCraft II.

past few years, especially regarding its application to RL.
The Curriculum Learning, consists of defining a set of source
tasks and training the agent on each of them individually
before progressing to learning on the full task.

One major direction of applying CL to RL focuses on how
to deal with increasingly complicated tasks. Andreas et al.
(2017) used curriculum learning to make their model scale up
smoothly from simple tasks to difficult ones, the difficulty of
each task is associated with sketches of different length. Later,
Wu and Tian (2017) integrated RL with CL for the complex
video game Doom, and developed an adaptive curriculum
training that samples from a varying distribution of tasks to
train the model, which achieves higher scores than learning
the target task directly. However, these methods simply man-
ually design the curricula which requires piror knowledge.
Another direction of CL is to automatically design the cur-
riculum. Narvekar et al. (2017a) proposed formulating the
selection of tasks using a Curriculum Markov Decision Pro-
cess (CMDP). However, whether the curriculum policy could
actually be learned is not demonstrated. Later, they (2019)
addressed this problem by exploring various representations
to learn the curriculum policy.

However, all the above approaches focus on designing the
curricula manually or automatically in single-agent learning
tasks. Although some existing works consider CL in multia-
gent settings, the way they utilize CL is quite simple, which
is not the focus of these works (Agarwal, Kumar, and Sycara
2019). To address the growing challenges as the increase of
agent-number in large-scale MASs, in this paper, we firstly
propose a novel multiagent CL, named Dynamic Multia-
gent Curriculum Learning (DyMA-CL) as shown in Figure



1. DyMA-CL solves large-scale problems by starting from
learning on a small-size multiagent scenario and progressive-
ly increasing the number of agents to learn the target task
finally. Three kinds of transfer mechanisms (Buffer Reuse,
Curriculum Distillation, and Model Reload) are proposed
across different tasks to accelerate the curriculum learning
process. The first two mechanisms do not require a specif-
ic network structure, while the last one does since existing
network architectures cannot be directly used in such a multi-
agent CL setting due to the fixed size of network input and
the state dimension in our settings varies across curricula.
Thus, we design a novel network structure called Dynamic
Agent-number Network (DyAN) by combining graph neural
network to handle the dynamic size of the network input.
Experimental results in Starcraft-II (Samvelyan et al. 2019)
and MAgent (Zheng et al. 2018) show that DyMA-CL greatly
improves the performance on large-scale problems compared
with state-of-the-art DRL approaches; and three kinds of
transfer mechanisms across curricula greatly boost the per-
formance of DyMA-CL.

Background

Partially Observable Stochastic Games

A natural multiagent extension of Markov decision processes
(MDPs) are Stochastic Games (SGs) (Littman 1994), which
model the dynamic interactions among multiple agents. In
this paper, we follow previous work’s settings and model
the multiagent learning problems as Partially Observable
Stochastic Games (POSGs) (Hansen, Bernstein, and Zilber-
stein 2004) considering that agents may not have access to
the complete environmental information.

A Partially Observable Stochastic Game (POSG) is defined
as a tuple 〈N ,S,A1, · · · ,An, T,R1, · · · ,Rn,O1, · · · ,On〉,
whereN is the set of n agents; S is the state set;Ai is the set
of actions available to agent i (A = A1×A2×· · ·×An is the
joint action space); T is the transition function that defines
transition probabilities between states: S ×A× S → [0, 1];
Ri is the reward function for agent i: S ×A → R and Oi is
the observation set of agent i.

Note that each state s ∈ S contains the possible con-
figurations of the environment and all agents, while each
agent i draws a private observation oi correlated with the
state: S 7→ Oi, e.g., an agent’s observation includes the
agent’s private information and the relative distance be-
tween itself and other agents. Formally, an observation
of agent i at step t can be constructed as follows: oit =

{oi,envt ,mi
t, o

i,1
t , · · · , oi,i−1t , oi,i+1

t , · · · , oi,nt }, where oi,envt

describes the surrounding environmental information, mi
t is

agent i’s private property (e.g., in robotics, mi
t includes agent

i’s location, the battery power and the healthy status of each
component) and the rest are the observations of agent i on
other agents (e.g., in robotics, oi,i−1t includes the agent i’s
observation about the relative location, the exterior of agent
i−1). A policy πi:Oi×Ai → [0; 1] specifies the probability
distribution over the action space of agent i. The goal of agent
i is to learn the optimal policy π∗i that maximizes the expected
return with a discount factor γ: J = Eπ∗i

[∑∞
t=0 γ

trit
]
.

Curriculum Learning
Curriculum Learning (CL) is firstly introduced in (Bengio et
al. 2009) which is defined as a Machine Learning notion to
improve the performance of Supervised Learning. The idea
of CL is inspired by observing the way humans learn that
starts with simple, small problems and gradually progresses
to more complex, difficult tasks. In Curriculum Learning, the
goal is to generate a series of training tasks, beginning from
the simplest one and then gradually increasing the difficulty
of training to improve the final asymptotic performance or
decrease the training time.

Narvekar et al. (2016) firstly applied CL to RL and pro-
posed a new CL framework. They generated a sequence of
RL source tasks, named "Curriculum", trained the agent on
each of the source tasks and then on the target task. Different
from CL in Supervised Learning, each task in the RL curricu-
lum is defined as an Markov Decision Process (MDP). The
difficulty of each task is controlled by eliminating certain
actions or states, modifying the transition or reward function,
or changing the starting or terminal distributions of MDPs.
The sequence of source tasks can be manually designed or
automated generated (Narvekar, Sinapov, and Stone 2017a;
2017b). In this paper, we focus on CL in multiagent RL set-
tings and design a dynamic multiagent curriculum learning
to solve large-scale multiagent learning problems.

Dynamic Multiagent Curriculum Learning
Large-scale Multiagent Systems
Multiagent learning receives much attention and how to
achieve multiagent coordination is the key problem. Recent
researches have found that the difficulty of multiagent learn-
ing is exponentially increasing as the number of agents in-
creases (Samvelyan et al. 2019). Moreover, in large-scale
multiagent systems, the dynamics and stochasticity of the
environment become more complex, which makes it more
challenging to achieve coordination among agents (Chen et
al. 2018). We first propose several multiagent properties in na-
ture which are commonly existing in MASs, and then utilize
these properties to address large-scale multiagent learning
problems.

Property 1 Partial Observability: In MASs, agents make
decisions based on their local observations, in which way
large-scale problems can be reduced to relatively indepen-
dent but correlated small-size ones.

The common settings are to model multiagent learning
problems as partially observable stochastic games (POSGs).
In such partially observable environments, each agent selects
an action based on its local (partial) observation, and the
number of agents in each agent’s vision is changing all the
time as agents move and execute actions. For example, when
the agent drives a car on the road, the number of cars in his
local vision changes (Singh, Jain, and Sukhbaatar 2019). The
number of cars in the driver’s vision decreased when the road
is crowded at first and then some cars go out of his vision,
learning in this situation is similar to learning in a scenario
with a small number of cars. Therefore, large-scale learning
problems can be naturally transformed into small ones based
on Partial Observability.
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Figure 2: An illustration of DyMA-CL using different transfer mechanisms.
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Property 2 Sparse Interactivity: From the perspective of the
global view, each agent only interacts with some of the agents
in MASs at the same time, and the interactions do not happen
all the time.

In multiagent systems, agents often only need to coop-
erate with their neighbors and finally achieve the overall
coordination, which makes a sparse-interaction environment.
For example, in the predator-prey environment (Yang et al.
2018b), each predator would cooperate with its neighboring
predators to catch the surrounding prey, without considering
other preys in a larger distance.
Property 3 State Semanticity: Each state contains semantic
information which can be utilized to measure the similarity
between states.

Although states in different POSGs hold different dimen-
sions, they may contain semantically similar information,
which can be utilized to measure the similarity of these states.
For example, in StarCraft II, with the dynamics of the game
continue, the number of agents would decrease if either side
of soldiers die in the battle, in which situation learning is
similar to that in a small-size battlefield. As shown in Fig-
ure 3, given three tasks with their state spaces in different
colors respectively, we can learn a mapping function Φ to
represent the relations of these states in the semantic state
space. Thus, the state semanticity property can be naturally
used for transfer across different multiagent scenarios.

With the increase of the number of agents, the difficulties
and challenges mentioned above become more severe, which

makes it harder or even impossible to learn from scratch in
such large-scale multiagent systems (Samvelyan et al. 2019).
Inspired by the above properties, we design a dynamic multi-
agent curriculum learning to address large-scale multiagent
learning problems, i.e., starting from learning in an environ-
ment with a small number of agents, and then progressively
increasing the number of agents, and finally finishing the cur-
riculum which is described in detail in the following section.

Knowledge Transfer across DyMA-CL
In this section, we propose a novel curriculum learning
mechanism called dynamic multiagent curriculum learning
(DyMA-CL) for efficient large-scale multiagent learning. To
the best of our knowledge, it is challenging and difficult to
learn on a large-scale multiagent scenario, e.g., win the battle
in large-scale StartCraft II scenarios using existing methods
(Samvelyan et al. 2019; Rashid et al. 2018). Therefore, we
build the curriculum with the increase of the agent-number
to learn on a large-scale multiagent scenario. The sequence
of tasks can be manually designed or automated generated.
Figure 1 illustrates an example of the DyMA-CL with 3 tasks
in StarCraft II. The target task is to win on a 15 immortals vs
15 immortals (15I) scenario. We first learn the task I on a 5
immortals vs 5 immortals (5I) scenario, then learn the task II
on a 10 immortals vs 10 immortals (10I) scenario and finally
learn the target task. We also incorporate different knowledge
transfer mechanisms across neighboring curricula which are
described in detail as follows.

Figure 2 shows the whole framework of DyMA-CL using
different transfer mechanisms. The simplest transfer is to
directly reload the model trained in previous curricula as an
initialization for current task learning (Figure 2(c)). However,
Model Reload is infeasible since the input of regular train-
ing networks is fixed while different curricula have different
state spaces which makes the input size changing. The policy
network needs to be specially designed to be suitable for
different input sizes. We first propose two kinds of transfer
mechanisms without any constraints on the network design:
Buffer Reuse (Figure 2(a)) and Distillation via KL Diver-
gence (Figure 2(b)). How to redesign the network to support
parameter transfer will be discussed in the next section.

Buffer Reuse Inspired by deep Q-learning from demon-



strations (Hester et al. 2018) which incorporates extra expert
demonstrations as the supervision, we propose a novel trans-
fer mechanism called Buffer Reuse. For the agent learns the
sequence of tasks τ1, τ2, · · · , τk using one of the off-policy
RL algorithm, e.g., DQN (Mnih et al. 2015), it is equipped
with an experience replay buffer Di for each task τi, which
stores the corresponding transition samples. When the agent
is learning the task τk, we can reuse experience of previously
learned tasks to accelerate learning ck. Specifically, we keep
a sequence of replay buffers D1,D2, · · · ,Dk−1 for previ-
ously learned tasks τ1, τ2, · · · , τk−1 and sample a batch of
b transitions from each replay buffer equally to reuse these
good transition samples as expert demonstrations, we also
sample a batch from the current bufferDk and then minimize
the following loss in each training step:

Loss =

k∑
i=1

b∑
j=1

(rji + γmax
a
′j
i

qτi(s
′j
i , a

′j
i )− qτi(s

j
i , a

j
i )

)2


(1)
where

(
sji , a

j
i , s
′j
i , r

j
i

)
is the jth transition sample from the

replay buffer Di for task i, γ is a discount factor.
Note that the state space is different across tasks since the

number of agents varies, i.e., the dimension of a state in task
τi is larger than that in task τj if i > j. Therefore, these
samples cannot be collected together to calculate the loss in
Equation (1) directly. Here we modify the sampled transitions
to reshape them as the same dimension first, e.g., add zero-
padding for those samples with a smaller size of states, and
then execute the buffer reuse mechanism to accelerate the
learning process.

Curriculum Distillation The second transfer mechanism
adopts the distillation via Kullback-Leibler (KL) divergence
(Rusu et al. 2016) as the supervision which is a more gen-
eral pattern suitable for both on-policy and off-policy RL
algorithms.

Given a learned sequence of tasks T = {τ1, τ2, · · · , τk−1}
and the current task τk, in order to accelerate the current
learning process, we transfer the knowledge from previously
learned tasks by distillation. Specifically, we add an extra
distillation lossLDistil to the regular RL lossLRL using the KL
divergence with some temperature ω: Loss = LRL + LDistil,
where we can distil either Q-values or policies:

LDistil =

k−1∑
i=1

KL(πτi ||πτk) or

LDistil =

k−1∑
i=1

|Dk|∑
j=1

softmax(
qτi(sj)

ω
) ln

softmax(
qτi (sj)

ω )

softmax(qτk(sj))

(2)
Where, πτi is the policy for task τi and ω is the temperature
that controls the proportion transferred to the curriculum τk.
Similar to the cases in Buffer Reuse mechanism, states as the
network input for different curricula should be reshaped to
the same size first.

Dynamic Number Agent Network
As mentioned above, each kind of transfer mechanisms can-
not directly be used in our DyMA-CL, since the number of
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Figure 4: The network structure of DyAN.

agents varies across curricula and the dimension of each a-
gent i’s observation oit at each step t changes, i.e., the number
of observations for other agents changes as the number of
agents changes.

Although the state space is different in two environments
due to the different number of agents, according to the Prop-
erty 3, some states in a large-scale environment often con-
tain similar semantic information to that in a small-size one.
Therefore, we provide a formal definition of the semantic
mapping function Φ(·) which extracts the semantic informa-
tion from each agent’s observation and indicates the mapping
between different state spaces.
Definition 1 Semantic Mapping Function

Given three tasks τe, τf and τg with differen-
t state dimensions, if state sτee and state s

τf
f con-

tain similar semantic information while s
τg
g does not,

then through the mapping function Φ(·), there exist-
s a latent space that makes the following inequation
establish: dis(Φ(sτee ),Φ(s

τf
f )) < dis(Φ(sτee ),Φ(s

τg
g )),

dis(Φ(sτee ),Φ(s
τf
f )) < dis(Φ(s

τf
f ),Φ(s

τg
g )), where dis(, ) is

the distance between two vectors.
By the definition of Semantic Mapping Function Φ(·),

the states in each task τi (each POSG) can be transformed
into the same semantic state space, which is also suitable
for mapping the local observation of each agent to the same
latent space. Thus, we can transfer knowledge across POSGs
with different state dimensions. This concept is widely used
in domain adaptation area (Higgins et al. 2017; Arnekvist,
Kragic, and Stork 2019), while they focus on how to transfer
from different tasks with the same state dimension. However,
the biggest challenge for DyMA-CL is how to deal with
different network input dimensions caused by the different
number of agents, and map the semantically similar states to
similar positions in the same latent space.

If the network is not restricted by the state/observation
of different dimensions, or the states/observations with the
same semantics of different dimensions can be mapped to
similar positions in the same latent space, then we can easily
transfer knowledge from different numbers of POSGs using
any of the above mechanisms for efficient curriculum learn-
ing. Inspired by Graph Neural Network (GNN) (Xu et al.
2019), to this end, we propose a novel network architecture
named Dynamic Agent-number Network (DyAN) to address
the above problems.

Figure 4 shows the network structure of the DyAN. Given
an observation oit of agent i at step t, the left part of DyAN
is the general neural networks, e.g., the fully-connected lay-
ers, with the environmental information oi,envt and its private



property mi
t as input. While the reset of oit contains several

observations about other agents which change among differ-
ent curricula. The right part of DyAN incorporates the GNN
to handle this dynamic dimensions of input. Specifically, we
learn a representation hi,jt for the agent i’s observation oi,jt
on each other agent j, which is achieved after several neural
network layers; and then using an aggregation operator to get
the output of GNN. Formally, the output of a GNN is:

hit = AGGREGATE
(
{hi,jt : j ∈ N−i}

)
(3)

where, N−i is the set of agents excluding agent i. Note that
we use one layer of GNN, a multiple layers of a GNN with
neighborhood communication is also suitable here. There
are several alternatives for the AGGREGATE operator (X-
u et al. 2019), e.g., the MAX operator that represents an
element-wise max-pooling, the MEAN operator representing
an element-wise mean pooling and the SUM operator, which
performance is investigated in the following section. Next,
the outputs of two parts of DyAN are concatenated to input
to the following neural network layers. The final output is the
Q-values or the policy respectively which is subject to the
specific RL algorithms.

As we described earlier, the simplest transfer mechanism
of model reload cannot be directly used in our curriculum
learning due to the dynamic dimensions of the network input.
By combining our DyAN, each previously learned model can
be easily reloaded as an initialization for the next curriculum
learning, which greatly accelerates the learning process and
also improves the final performance. In the next section, we
investigate the performance of three transfer mechanisms in
our curriculum learning in detail.

Simulations
In this section, we evaluate the performance of our DyMA-CL
on two large-scale scenarios: 1) StarCraft II, which contains
various scenarios for a number of agents to learn coordination
to solve complex tasks; and 2) MAgent (Zheng et al. 2018),
which is a simulated battlefield with two large-scale armies
(groups), e.g., each army consists of 50 soldiers who would
be arrayed in the battlefield (a grid world). We first select
two representative DRL algorithms from the perspective of
Independent learning and Joint-action Learning respectively:
IQL (Tampuu et al. 2017), VDN (Sunehag et al. 2018) to
investigate the performance of these approaches with and
without DyMA-CL on large-scale StarCraft II scenarios. We
further compare the performance of various existing DRL
approaches (IQL, PPO (Schulman et al. 2017), A2C (Mnih
et al. 2016), and ACER (Wang et al. 2017)) with DyMA-CL
on large-scale MAgent scenarios to validate the performance
of DyMA-CL since independent learning is more difficult to
learn in such large-scale multiagent settings without consid-
ering the coexistence of other agents. The details of neural
network structures, parameter settings and the curriculum
schedule are in the arXiv version.

StarCraftII
StarCraft II is a real-time strategy game with one or more
humans competing against each other or a built-in game
AI. At each step, each agent observes the local game state

which consists of the following information for all units in
its field of view: relative distance between other units, the
position and unit type (detailed in supplementary materials)
and selects one of the following actions: move north, south,
east or west, attack one of the grid units, stop and the null
action. Agents belonging to the same side receive the same
joint reward at each time step that equals to the total damage
on the enemy units. Agents also receive a joint reward of
10 points after killing each opponent, and 200 points after
killing all opponents. The game ends when all agents on one
side die or the time exceeds a fixed period.

Note that previous StarCraft II settings enable an agent
to attack one of its enemies by choosing one of id numbers
(Samvelyan et al. 2019). In this paper, we design the attack
action is to choose one of the grid units by dividing the battle-
field into several grids, in which case the coordination among
agents is much more difficult to achieve. We mainly consider
combat scenarios and design a multiagent curriculum learn-
ing with the number of agents increasing (see Figure 1) to
achieve the victory on a 15I scenario.

Figure5(a-c) show the average win rate of IQL with and
without our DyMA-CL under different network structures
(i.e., Vanilla network does not contain the GNN part, and
MAX means the GNN uses MAX as the aggregation opera-
tor). We can see from Figure5(a) that SUM performs better
than other kinds of network structures on the first task of a 5I
scenario. As for the task II on a 10I battlefield (Figure5(b)),
our DyMA-CL with all three transfer mechanisms perform
better than learning from scratch. Note that the model reload
mechanism performs best among all transfer mechanisms,
this is because our proposed DyAN successfully learns the
similar semantics of states across curricula, then the model
from previously learned curriculum can be directly reused,
which leads to a higher win rate. The SUM operator performs
best among all three aggregations which means the capability
of learning state semantics is different for these three aggre-
gations and the GNN with SUM as aggregation learns more
accurate state semantics. This will be explained in detail in
the following section. For our last curriculum (Figure5(c)),
our DyMA-CL with model reload mechanism performs best
among all transfer mechanisms. Similar results as in curricu-
lum II can be found that learning from scratch is too difficult
as the increase of the agent number, and the winning rate is
never increased. We have conducted the simulation on the
same amount of total training time (7.5e+6 steps) and vanilla
IQL still achieves an average win rate of 0.

Figure5(d-f) depict the average win rate of VDN with
and without our DyMA-CL. We can find different network
architectures perform similarly on the first task learning
(Figure5(d)), and perform better than that combining IQL
in universal. This is because VDN explicitly considers how
to coordinate multiple agents using a team reward. Figure5(e)
and (f) show the similar and more outstanding performance
of DyMA-CL than that in IQL, and the GNN with SUM
as aggregation learns best among all three mechanisms of
DyMA-CL, and the reason will be discussed in the following
section in detail. Note that the common measurement for
StarCraft II is the average win rate (Samvelyan et al. 2019),
which may hinder the phenomenon of a jumpstart on the
performance of DyMA-CL with model reload mechanism.
Therefore, we further present the results of average rewards
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Figure 5: Average win rate of IQL and VDN on DyMA-CL.

as shown in Figure 6. We can see a jumpstart average reward
of our DyMA-CL with model reload mechanism than learn-
ing from scratch, which indicates the agents can kill more
enemies and achieve higher average rewards at the beginning
than learning from scratch, confirming the effectiveness of
model reload mechanism across curricula.

Figure 6: The performance of VDN on a 15I scenario.

Analysis We further investigate the influence of differen-
t aggregations on the performance of DyMA-CL. As we
discussed in Definition 1, if the two states with different di-
mensions contain similar semantic information, we can map
them to the same neighborhood position in the same latent
space. Here we illustrate whether these aggregations learn
the semantics of states using three StartCraft II scenarios as
examples, each of which contains two groups of 3, 4, 5 agents
respectively. Then we input the observation about teammates
to DyAN, and use t-SNE (Wattenberg, Viégas, and Johnson
2016) to map the embedding output of the GNN part to a
2-dimension space, as shown in Figure 7(a-c). The different
colors denote the state contains different semantic informa-
tion, e.g., the green color represents that the local observation

only contains one teammate, which is actually the same se-
mantics while the input size is different across 3 scenarios.
The different shapes represent states in different scenarios,
e.g., the triangle denotes the observations from a 4I scenario.
We can see that the mapping result on the SUM aggregation
is best among all aggregations, which means SUM learn-
s more accurate state semantics so that the states with the
same semantics across different scenarios are mapped to the
similar position and each kind of semantics is distinguished
clearly. Thus this explains why SUM performs best among
three aggregation operations shown in Figure 5.

MAgent
MAgent is a Mixed Cooperative-Competitive scenario with
two armies fighting against each other, which supports hun-
dreds to millions of agents. The goal of each army is to get
more rewards by collaborating with teammates to destroy
all opponents. Each agent selects one of the following ac-
tions: moving to some grid unit or attacking some grid unit
based on its local observation which contains the follow-
ing information for all units: the hit points (HP), the posi-
tions. We adopt the default reward setting: -0.005 for every
move, 0.2 for attacking an enemy, 5 for killing an enemy, -0.1
for attacking an empty grid, and -0.1 for being attacked or
killed. We design a curriculum containing 5 tasks, each of
which learns on a battlefield with different number of agents
(10vs10, 20vs20, 30vs30, 40vs40, 50vs50).

We validate the performance of various independent learn-
ing algorithms with or without DyMA-CL. Table 1 presents
the average survival teammates and kill count of various ap-
proaches in the target task of a 50 agents vs 50 agents scenari-
o. We can see that DyMA-CL with model reload mechanism
greatly improves the final performance of IQL than learn-
ing from scratch, achieving more survival teammates and a
higher average kill count. Similar results can be found in P-
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Figure 7: Embedding analysis for different aggregation mechanisms.

Table 1: Mean and Standard Error in MAgent (’w/’ denotes
with and ’w/o’ denotes without).

Results / Methods Survivors Kill count

IQL

Max
w/ CL 20.35±4.87 50±0

w/o CL 0.54±2.65 31.83±8.52

Mean
w/ CL 2.33±2.9 43.58±8.29

w/o CL 0 5.37±6.92

Sum
w/ CL 10.52±6.27 49.34± 2.23

w/o CL 0.05± 0.42 26.01± 7.11

PPO

Max
w/ CL 0.21±1.32 22.76±9.06

w/o CL 0 4.18±4.84

Mean
w/ CL 0.22±0.95 23.66±7.52

w/o CL 0 0.34±0.61

Sum
w/ CL 1.48±2.69 38.25±7.33

w/o CL 0 1.06±1.12

A2C

Max
w/ CL 16.5±10.92 47.71±5.61

w/o CL 3.65±5.58 36.4±13.79

Mean
w/ CL 6.8±7.39 43.77±10.36

w/o CL 0.28±1.04 25.21±11.7

Sum
w/ CL 8.96±8.52 44.59±9.17

w/o CL 1.07 ±3.75 17.1±14.44

ACER

Max
w/ CL 0 9.14±4.52

w/o CL 0 4.19±2.52

Mean
w/ CL 0 12.62±3.68

w/o CL 0 4.84±2.8

Sum
w/ CL 0 9.67±3.68

w/o CL 0 4.84±2.68

PO, A2C, and ACER that DyMA-CL boosts the performance
of these approaches and outperforms learning from scratch.
Note that the performance of ACER is worse than other meth-
ods, which is caused by the policy adjustment using samples
from its replay buffer. This mechanism is only considered
from the perspective of independent learning, ignoring the
non-stationary environment caused by other agents. More-
over, DyMA-CL still improves the performance of ACER
and achieves a higher average kill count.

Discussion
As noted, we manually design the curriculum for both two
domains, StarCraft II and MAgent. Experimental results have

shown the great improvement of DyMA-CL on large-scale
MASs. However, the boost in the performance in this paper
is the first step that validates the effectiveness of DyMA-
CL. We have found that the design of the curriculum is a
critical factor in the performance of DyMA-CL. How to
select an appropriate curriculum schedule (including how to
decide on the training step-size for each task, how to select
the suitable learned model to reload and so on) is crucial.
Researches about automatic generation of the curriculum
are still investigated at an initial stage and not considered in
multiagent settings. Perhaps the major remaining limitations
are how to automatically generate the multiagent curriculum,
which will be further investigated as our future work.

Conclusion and Future Work

In this paper, we propose a novel algorithm, Dynamic Multia-
gent Curriculum Learning (DyMA-CL) to address large-scale
multiagent learning problems. We also propose three transfer
mechanisms across different curricula to accelerate the learn-
ing process, which is extensively validated by simulations.
Furthermore, we design a novel network structure, Dynamic
Agent-number Network (DyAN) to handle the dynamic size
of network input. Experimental results show that DyMA-CL
greatly improves the performance in large-scale problems
compared with state-of-the-art DRL approaches. As future
work, it is worthwhile investigating how to achieve automati-
cally multiagent curriculum learning to accelerate large-scale
multiagent learning. Another direction is how to design more
efficient transfer mechanisms to facilitate robust multiagent
curriculum learning.
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